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Electron-acoustic plasma waves: Oblique modulation and envelope solitons

I. Kourakis* and P. K. Shukla†

Institut für Theoretische Physik IV, Fakulta¨t für Physik und Astronomie, Ruhr-Universita¨t Bochum, D-44780 Bochum, Germany
~Received 11 June 2003; published 31 March 2004!

Theoretical and numerical studies are presented of the amplitude modulation of electron-acoustic waves
~EAWs! propagating in space plasmas whose constituents are inertial cold electrons, Boltzmann distributed hot
electrons, and stationary ions. Perturbations oblique to the carrier EAW propagation direction have been
considered. The stability analysis, based on a nonlinear Schro¨dinger equation, reveals that the EAW may
become unstable; the stability criteria depend on the angleu between the modulation and propagation direc-
tions. Different types of localized EA excitations are shown to exist.
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I. INTRODUCTION

Electron-acoustic waves~EAWs! are high-frequency~in
comparison with the ion plasma frequency! electrostatic
modes@1# in plasmas where a ‘‘minority’’ of inertial cold
electrons oscillate against a dominant thermalized ba
ground of inertialess hot electrons providing the necess
restoring force. The phase speedvph of the EAW is much
larger than the thermal speeds of cold electrons (v th,c) and
ions (v th,i), but is much smaller than the thermal speed
the hot electron component (v th,h); v th,a5(Ta /ma)1/2,
wherea5c,h,i (ma denotes the mass of the componenta;
the Boltzmann constantkB is understood to precede the tem
peratureTa everywhere!. Thus, the ions may be regarded
a constant positive charge density background, provid
charge neutrality. The EAW frequency is typically well b
low the cold electron plasma frequency, since the wavelen
is larger than the Debye lengthlh5(Th/4pnh0e2)1/2 involv-
ing hot electrons (na denotes the particle density of the com
ponenta everywhere!.

The linear properties of the EA waves are well understo
@2–5#. Of particular importance is the fact that the EA
propagation is only possible within a restricted range of
parameter values, since both long and short wavelen
EAWs are subject to strong Landau damping due to re
nance with either the hot or the cold~respectively! electron
component. In general, the EAW group velocity scales
vph5v th,hAnc /nh; therefore, the condition v th,c!vph
!v th,h immediately leads to a stability criterion in the form
Tc /Th!Anc /nh!1. A more rigorous investigation@4# re-
veals that EAWs will be heavily damped, unless the follo
ing ~approximate! conditions are satisfied:Th /Tc*10 and
0.2&nc /ne&0.8 ~wherene5nc1nh). Even then, however
only wave numbersk between, roughly, 0.2kD,c and 0.6kD,c
~for Th /Tc5100; see Gary and Tokar in Ref.@4#! will re-
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main weakly damped@kD,c5(4pnc,0e
2/Tc)

1/2[lD,c
21 obvi-

ously denotes the cold electron Debye wave number#. The
stable wave number value range is in principle somew
extended with growing temperature ratioTh /Tc ; see the ex-
haustive discussion in Refs.@4# and @5#.

As far as thenonlinearaspects of EAW are concerned, th
formation of coherent EA structures has been considered
one-dimensional model involving cold@6,7# or finite tem-
perature@8# ions. Furthermore, such nonenvelope solita
structures, associated with a localized compression of
cold electron density, have been shown to exist in a mag
tized plasma@9–11#. It is worth noting that such studies ar
recently encouraged by the observation of moving EA
related structures, reported by spacecraft missions, e.g.
FAST at the auroral region@12–14#, as well as the GEOTAIL
and POLAR earlier missions in the magnetosphere@15–17#.
However, although most solitary wave structures obser
are positive potential waves~consistent with an electron hol
image!, there have also been some negative potential
low velocity structure observations, suggesting that so
other type of solitary waves may be present in the magn
sphere@17,18#. These structures are now believed to be
lated to EA envelope solitary waves, for instance, due
trapping and modulation by ion acoustic density pertur
tions @6,18#.

Amplitude modulation is a long-known generic feature
nonlinear wave propagation, resulting in higher harmo
generation due to nonlinear self-interactions of the car
wave in the background medium. The standard method
studying this mechanism is a multiple space and time sc
technique@19,20#, which leads to a nonlinear Schro¨dinger
equation~NLSE! describing the evolution of the wave env
lope. Under certain conditions, it has been shown that wa
may develop a Benjamin-Feir-type~modulational! instability,
i.e., their modulated envelope may be unstable to exte
perturbations. Furthermore, the NLSE-based analysis,
countered in a variety of physical systems@21–23#, reveals
the possibility of the existence of localized structures~enve-
lope solitary waves! due to the balance between the wa
dispersion and nonlinearities. This approach has long b
considered with respect to electrostatic plasma wa
@20,24–30#.

In this paper, we study the occurrence of modulatio
instability as well as the existence of envelope solitary str
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tures involving EAWs that propagate in an unmagnetiz
plasma composed of three distinct particle populations
population of ‘‘cold’’ inertial electrons~massme , charge
2e), surrounded by an environment of ‘‘hot’’~thermalized
Boltzmann! electrons, moving against a fixed background
ions ~massmi , chargeqi51Zie), which provide charge
neutrality. These three plasma species will henceforth be
noted byc, h, andi, respectively. By employing the reductiv
perturbation method and accounting for harmonic genera
nonlinearities, we derive a cubic Schro¨dinger equation for
the modulated EA wave packet. It is found that the EAWs
unstable against oblique modulations. Conditions un
which the modulational instability occurs are given. Possi
stationary solutions of the nonlinear Schro¨dinger equation
are also presented.

II. THE MODEL EQUATIONS

Let us consider the hydrodynamic-Poisson system
equations for the EAWs in an unmagnetized plasma. T
number densitync of cold electrons is governed by the co
tinuity equation

]nc

dt
1“•~ncuc!50, ~1!

where the mean velocityuc obeys

]uc

dt
1uc•“uc5

e

me
“F. ~2!

Here, the wave potentialF is obtained from Poisson’s equa
tion

¹2F524p( qs ns54p e~nc1nh2Zi ni !. ~3!

We assume immobile ions (ni5ni ,05const) and a Boltz-
mann distribution for the hot electrons, i.e.,nh
'nh,0 exp(eF/kBTh) (Th is electron temperature,kB is the
Boltzmann constant!, since the EAW frequency is muc
higher than the ion plasma frequency and the EA wave ph
velocity is much lower than the electron thermal spe
(Th /me)

1/2. The overall quasineutrality condition reads

nc,01nh,02Zi ni ,050. ~4!

Rescaling all variables and developing aroundF50, Eqs.
~1!–~3! can be cast in the reduced form

]n

dt
1“•~nu!50,

]u

dt
1u•“u5“f,

and

“

2f5f1 1
2 f21 1

6 f31b~n21!, ~5!
03641
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where all quantities are nondimensional:n5nc /nc,0 , u
5uc /v0, andf5F/F0; the scaling quantities are, respe
tively, the equilibrium densitync,0, the ‘‘electron-acoustic
speed’’v05cs,h5(kBTh /me)

1/2, andF05(kBTh /e). Space
and time are scaled over the Debye lengthlD,h
5(kBTh/4pnh,0e

2)1/2 and the inverse plasma frequenc
vp,h

215lD,h /cs5(4pnh,0e
2/me)

21/2, respectively. The di-
mensionless parameterb denotes the ratio of the cold to th
hot electron component, i.e.,b5nc /nh . Recall that Landau
damping in principle prevails on both high and low values
b ~cf. the discussion in the Introduction!. According to the
results of Gary and Tokar in Ref.@4#, for undamped EA wave
propagation one should consider 0.25&b&4.

III. PERTURBATIVE ANALYSIS

Let S be the state~column! vector (n,u,f)T, describing
the system’s state at a given positionr and instantt. Small
deviations will be considered from the equilibrium sta
S(0)5(1,0,0)T by taking S5S(0)1eS(1)1e2 S(2)1•••

5S(0)1(n51
` en S(n), wheree!1 is a smallness paramete

Following the standard multiple scale~reductive perturba-
tion! technique@19#, we shall consider a set of stretche
~slow! space and time variablesz5e(x2l t) and t5e2t,
wherel is to be later determined by compatibility requir
ments. All perturbed states depend on the fast scales via
phaseu15k•r2vt only, while the slow scales only ente
the l th harmonic amplitude Sl

(n) , viz., S(n)

5( l 52`
` Sl

(n)(z,t)eil (k•r2vt); the reality condition S2 l
(n)

5Sl
(n)* is met by all state variables. Two directions a

therefore of importance in this~three-dimensional! problem:
the ~arbitrary! propagation direction and the oblique mod
lation direction, defining, say, thex axis, characterized by a
pitch angleu. The wave vectork is thus taken to bek
5(kx ,ky)5(k cosu,ksinu).

Substituting the above expressions into the system
equations~5! and isolating distinct orders ine, we obtain the
nth-order reduced equations

2 i l vnl
(n)1 i l k•ul

(n)2l
]nl

(n21)

]z
1

]nl
(n22)

]t
1

]ul ,x
(n21)

]z

1 (
n851

`

(
l 852`

` F i l k•ul 2 l 8
(n2n8) nl 8

(n8)
1

]

]z
~nl 8

(n8)u( l 2 l 8),x
(n2n821)

!G
50, ~6!

2 i l vul
(n)2 i l kf l

(n)2l
]ul

(n21)

]z
1

]ul
(n22)

]t
2

]f l
(n21)

]z
x̂

1 (
n851

`

(
l 852`

` F i l 8k•ul 2 l 8
(n2n8)ul 8

(n8)
1u( l 2 l 8),x

(n2n821)
]ul 8

(n8)

]z
G

50, ~7!

and
1-2
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2~ l 2k211!f l
(n)2b nl

(n)12i lk x

]f l
(n21)

]z
1

]2f l
(n22)

]z2

2
1

2 (
n851

`

(
l 852`

`

f l 2 l 8
(n2n8)f l 8

(n8)

2
1

6 (
n8,n951

`

(
l 8,l 952`

`

f l 2 l 82 l 9
(n2n82n9)f l 8

(n8) f l 9
(n9)

50.

~8!

For convenience, one may consider instead of the vecto
relation~7! the scalar one obtained by taking its scalar pro
uct with the wave numberk.

The standard perturbation procedure now consists in s
ing in successive orders;en and substituting in subseque
orders. For instance, the equations forn52, l 51,

2 i l vnl
(1)1 i l k•ul

(1)50, ~9!

2 i l vul
(1)2 i l kf l

(1)50, ~10!

and

2~ l 2k211!f l
(1)2bnl

(1)50, ~11!

provide the familiar EAW dispersion relation

v25
b k2

k211
, ~12!

i.e., restoring dimensions

v25vp,c
2 k2

k21kD
2

[
cs,c

2 k2

11k2lDh
2

, ~13!

where vp,c5cs,c /lD,c5(4pnc,0e
2/me)

1/2 ~associated with
the cold component!, and determine the first harmonics
the perturbation, viz.,

n1
(1)52

11k2

b
f1

(1), k•u1
(1)5v n1

(1) ,

u1,x
(1)5

v

k
cosu n1

(1), u1,y
(1)5

v

k
sinu n1

(1) . ~14!

Proceeding in the same manner, we obtain the seco
order quantities, namely, the amplitudes of the second
monicsS2

(2) and constant~‘‘direct current’’! termsS0
(2) , as

well as a nonvanishing contributionS1
(2) to the first harmon-

ics. The lengthy expressions for these quantities, omi
here for brevity, are conveniently expressed in terms of
first-order potential correctionf1

(1) . The equations forn
52, l 51 then provide the compatibility condition:l
5vg(k)5]v/]kx5v8(k)cosu5(v3/bk3)cosu; l is, there-
fore, the group velocity in thex direction.
03641
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IV. DERIVATION OF THE NONLINEAR SCHRO ¨ DINGER
EQUATION

Proceeding to the third order ine (n53), the equations
for l 51 yield an explicit compatibility condition in the form
of the nonlinear Schro¨dinger equation

i
]c

]t
1P

]2c

]z2
1Qucu2 c50, ~15!

wherec denotes the electric potential correctionf1
(1) . The

‘‘slow’’ variables $z,t% were defined above.
Thegroup dispersion coefficient Pis related to the curva-

ture of the dispersion curve asP5 1
2 (]2v/]kx

2)
5 1

2 @v9(k)cos2 u1v8(k)sin2 u/k#; the exact form ofP reads

P~k!5
1

b

1

2 v S v

k D 4F12S 113
1

b
v2D cos2uG . ~16!

The nonlinearity coefficient Qis due to the carrier wave
self-interaction in the background plasma. Distinguishi
different contributions,Q can be split into three distinc
parts, viz.,Q5Q01Q11Q2, where

Q05
v3

2 b3 k2

1

~11k2!32cos2u
$~11k2!4~112b1k2!

1@b214b~11k2!314~11k2!4~212k21k4!#cos2u%,

~17!

Q15
v3

4b k2
, ~18!

Q252
k2

12v3 F v6

b k6
1

v2

k2
13~318k2!G . ~19!

We observe that only the first contributionQ0, related to
self-interaction due to the zeroth harmonics, is angle dep
dent, while the latter two—respectively, due to the cubic a
quadratic terms in the last Eq.~5!—areisotropic. Also, Q2 is
negative, whileQ0 ,Q1 are positive for all values ofk andb.
For parallel modulation, i.e.,u50, the simplified expres-
sions for Puu50 and Quu50 are readily obtained from the
above formulas; note thatPuu50,0, while Quu50, even
though positive fork→0 ~see below!, changes sign at som
critical value ofk.

A preliminary result regarding the behavior of the coef
cients P and Q for long wavelengths may be obtained b
considering the limit of smallk!1 in the above formulas
The parallel (u50) and oblique (uÞ0) modulation cases
have to be distinguished straightaway. For small values ok
(k!1), P is negative and varies as

Puu50'2 3
2 Ab k ~20!

in the parallel modulation case~i.e., u50), thus tending to
zero for vanishingk, while for uÞ0, P is positive and goes
to infinity as
1-3
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I. KOURAKIS AND P. K. SHUKLA PHYSICAL REVIEW E 69, 036411 ~2004!
PuuÞ0'
Ab

2 k
sin2u ~21!

for vanishingk. Therefore, the slightest deviation byu of the
amplitude variation direction with respect to the wave pro
gation direction results in a change in sign of the grou
velocity dispersion coefficientP. On the other hand,Q varies
as;1/k for small k!1. ForuÞ0, Q is negative

QuuÞ0'2
1

12b3/2
~31b!2

1

k
, ~22!

while for vanishingu, the approximate expression forQ
changes sign, i.e.,

Quu50'1
1

12b3/2
~31b!2

1

k
. ~23!

In conclusion, bothP and Q change sign when ‘‘switching
on’’ u. Since the wave’s~linear! stability profile, expected to
be influenced by obliqueness in modulation, essentially re
on ~the sign of! the productPQ ~see below!, we see that long
wavelengths will always be stable.

V. STABILITY ANALYSIS

The standard stability analysis@20,21,31# consists in lin-
earizing around the monochromatic~Stokes’s wave! solution
of the NLSE~15!: c5ĉ eiQuĉu2t1c.c. ~notice the amplitude
dependence of the frequency! by settingĉ5ĉ01eĉ1, and
taking the perturbation ĉ1 to be of the form ĉ1

5ĉ1,0 ei ( k̂z2v̂t)1c.c. ~the perturbation wave numberk̂ and
the frequencyv̂ should be distinguished from their carrie
wave homologous quantities, denoted byk and v). Substi-

FIG. 1. The productPQ50 contour is depicted against the no
malized wave numberk/kD ~in abscissa! and angleu ~between 0
andp); black ~white! color represents the region where the prod
is negative~positive!, i.e., the region of linear stability~instability!.
Furthermore, black~white! regions may support dark-~bright-! type
solitary excitations. This plot refers to a realistic cold to hot elect
ratio equal tob50.5 ~i.e., one third of the electrons are cold!.
03641
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tuting into Eq.~15!, one thus readily obtains the nonline
dispersion relation

v̂25P2k̂2S k̂222
Q

P
uĉ0u2D . ~24!

The wave will obviously bestableif the productPQ is nega-
tive. However, for positivePQ.0, instability sets in for
wave numbers below a critical valuek̂cr5A2Q/Puĉ0u, i.e.,
for wavelengths above a threshold:lcr52p/ k̂cr ; defining
the instability growth rates5uIm v̂( k̂)u, we see that it
reaches its maximum value fork̂5 k̂cr /A2, viz.,

smax5uIm v̂u k̂5 k̂cr /A25uQuuĉ0u2. ~25!

We conclude that the instability condition depends only
the sign of the productPQ, which may now be studied nu
merically, relying on the exact expressions derived above

In Figs. 1–3, we have depicted thePQ50 boundary
curve against the normalized wave numberk/kD,h ~in ab-
scissa! and angleu ~between 0 andp); the area in black
~white! represents the region in the (k-u) plane where the
product is negative~positive!, i.e., where the wave is stabl
~unstable!. For illustration purposes, we have considered
wide range of values of the wave numberk ~normalized by

t

n

FIG. 2. Similar to Fig. 1, forb51.

FIG. 3. Similar to Figs. 1 and 2 considering a very strong pr
ence of cold electrons (b55). Notice the appearance of instabilit
~bright! regions for large angle values and long wavelengths.
1-4
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ELECTRON-ACOUSTIC PLASMA WAVES: OBLIQUE . . . PHYSICAL REVIEW E 69, 036411 ~2004!
the Debye wave numberkD,h); nevertheless, recall that th
analysis is rigorously valid in a quite restricted region
~low! values ofk. Modulation angleu is allowed to vary
between zero andp ~see that all plots arep/2 periodic!.

As analytically predicted above, the productPQ is nega-
tive for small k, for all values ofu; long wavelengths will
always be stable. The product possesses positive value
angle values between zero andu'1 rad '57°; instability
sets in above a wave number threshold which, even tho
unrealistically high foru50, is clearly seen to decrease
the modulation pitch angleu increases from zero to'30°,
and then increases again up tou'57°. Nevertheless, beyon
that value~and up top/2) the wave remains stable; this
even true for the wave number regions where the w
would beunstableto a parallel modulation. The inverse e
fect is also present: even though certaink values correspond
to stability for u50, the same modes may become unsta
when subject to an oblique modulation (uÞ0). In all cases,
the wave appears to be globally stable to large angleu modu-
lation ~between 1 andp/2 rad, i.e., 57° to 90°).

It is interesting to trace the influence of the percentage
the cold electron population~related tob5nc /nh) on the
qualitative remarks of the preceding paragraph. For value
b below unity, there seems to be only a small effect on
wave’s stability, as described above; cf. Figs. 1 and 2. A
matter of fact,b,1 appears to be valid in most reports
satellite observations, carried out at the edges of the Aur
Kilometric Radiation region~where the hot and cold electro
population coexistence is observed! @9,12,14#; furthermore,
theoretical studies have suggested that a lowb value ~in
addition to a high hot to cold electron temperature ratio! is
the condition ensuring EAW stability, i.e., resistance
damping@4,9#. Nevertheless, notice for rigor that allowin
for a high fraction of cold electrons (b*3.5) leads to a
strong modification of the EA wave’s stability profile an
even produces instability in otherwise stable regions; cf. F
3 ~where an unrealistic value ofb55 was considered!. In a
qualitative manner, adding cold electrons seems to favor
bility to quasiparallel modulation~small u), yet allows for
instability to higheru oblique modulation; cf. Figs. 1–3
Since the black/white regions in the figures correspond
dark-bright-type solitons~see below!, we qualitatively de-
duce that a solitary wave of either type may become unst
in case of an important increase in minority electron com
nent, i.e., well aboveb51; see Fig. 5. Notice that the criti
cal value of the cold-to-hot electron number ratiob in order
for such phenomena to occur may be quite low if obliq
modulation is considered; see, e.g., Fig. 5~b!.

VI. ENVELOPE SOLITARY WAVES

The NLSE~15! is known to possess distinct types of l
calized constant profile~solitary wave! solutions, depending
on the sign of the productPQ. Following Refs.@31,32#, we
seek a solution of Eq. ~15! in the form c(z,t)
5Ar(z,t)ei Q(z,t), wherer,s are real variables which ar
determined by substituting into the NLSE and separating
and imaginary parts. The different types of solution thus
tained are summarized in the following.
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For PQ.0 we find the(bright) envelope soliton@33#,

r5r0 sech2S z2u t

L D , Q5
1

2P Fuz2S V1
1

2
u2D tG ,

~26!

representing a bell-shaped localized pulse traveling a
speedu and oscillating at a frequencyV ~for u50). The
pulse widthL depends on the~constant! maximum amplitude
squarer0 as

L5A 2P

Q r0
. ~27!

For PQ,0 we have thedarkenvelope soliton~hole! @33#,

r5r1F12sech2S z2ut

L8
D G5r1 tanh2S z2ut

L8
D , ~28!

Q5
1

2P Fu z2S 1

2
u222PQr1D tG ,

representing a localized region of negative wave den
~shock! traveling at a speedu; this cavity traps the electron
wave envelope, whose intensity is now rarefactive, i.e.
propagating hole in the center and constant elsewh
Again, the pulse width depends on the maximum amplitu
squarer1 via

L85A2U P

Q r1
U. ~29!

Finally, looking for velocity-dependent amplitude solu
tions, for PQ,0, one obtains thegray envelope solitary
wave @32#,

r5r2F12a2 sech2S z2ut

L9
D G ,

FIG. 4. Contours of the ratioP/Q—whose absolute value is
related to the square of the soliton width, see Eqs.~27! and ~29!—
are represented against the normalized wave numberk/kD,h and
angleu. See that the negative values correspond to two branc
~lower half!, so that the variation ofP/Q, for a given wave number
k, does not depend monotonically onu. b50.5 in this plot.
1-5
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I. KOURAKIS AND P. K. SHUKLA PHYSICAL REVIEW E 69, 036411 ~2004!
Q5
1

2P FV0 z2S 1

2
V0

222PQr2D t1Q10G

2Ssin21

a tanhS z2ut

L9
D

F12a2 sech2S z2ut

L9
D G 1/2, ~30!

which also represents a localized region of negative w
density;Q10 is a constant phase; andS denotes the produc
S5sgnP3sgn(u2V0). In comparison to the dark solito
~28!, note that apart from the maximum amplituder2, which
is now finite ~i.e., nonzero! everywhere, the pulse width o
this gray-type excitation,

L95A2U P

Q r2
U 1

a
, ~31!

now also depends ona, given by

a2511
1

2PQ

1

r2
~u22V0

2!<1 ~32!

(PQ,0), an independent parameter representing the mo
lation depth (0,a<1). V0 is an independent real consta
which satisfies the condition@32#

V02A2uPQur2<u<V01A2uPQur2;

for V05u, we havea51 and thus recover the dark solito
presented in the previous paragraph.

Summarizing, we see that the regions depicted in F
1–3 actually also distinguish the regions where differ
types of localized solutions may exist: bright~dark or gray!
solitons will occur in white~black! regions ~the different
types of NLS excitations are exhaustively reviewed in R
@32#!. Soliton characteristics will depend on dispersion a
nonlinearity via theP and Q coefficients; in particular, the
sign/absolute value of the ratioP/Q provides, as we saw, th
type ~bright or dark-gray!/width, respectively, of the local
ized excitation. Therefore, regions with higher values
uP/Qu will support wider~spatially more extended! localized
excitations of either bright or dark/gray type–see Fig.
Solitons of the latter type~holes! appear to be predominan
in the long wavelength region which is of interest here,
agreement with observations, yet may become unstable
give their place to~bright! pulses, in the presence of obliqu
perturbation~Figs. 1 and 2! and/or localnc /nh value irregu-
larities ~Fig. 5!. In the short wavelength region, these qua
tative results may still be valid, yet quantitatively appear
be rather questionable, since the wave stability canno
taken for granted due to electron Landau damping. Never
less, even so, the EAWs are known to be less hea
damped than Langmuir waves@4#, and may dominate the
space plasma~high! frequency spectrum in the presence
different temperature electron populations.
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VII. CONCLUSIONS

This work has been devoted to the study of the modu
tion of EAWs propagating in an unmagnetized space plas
Allowing for the modulation to occur in an oblique manne
we have shown that the conditions for the modulational
stability depend on the angle between the EAW propaga
and modulation directions. In fact, the region of parame

FIG. 5. TheP/Q coefficient ratio, whose sign/absolute value
related to the type/width of solitary excitations, is depicted aga
the cold-to-hot electron density ratiob. The wave number is chose
ask/kD,h50.7. ~a! u50° ~parallel modulation!: only dark-type ex-
citations exist (PQ,0); their width increases withb. ~b! u560°
~oblique modulation!: bright/dark excitations exist forb below/
abovebcr'0.8. The bright/dark soliton width increases/decrea
with b. ~c! u590° ~transverse modulation!. A rather~unacceptably!
high value ofb was taken to stress the omnipresence of dark-t
excitations.
1-6
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values where instability occurs is rather extended for angu
values up to a certain threshold, and, on the contr
smeared out for higheru values~and up to 90°, then going
on in ap/2-periodic fashion!.

Furthermore, we have studied the possibility for the f
mation of localized structures~envelope EAW solitary
waves! in our two-electron system. Distinct types of loca
ized excitations~envelope solitons! have been shown to ex
ist. Their type and propagation characteristics depend on
carrier wave wave numberk and the modulation angleu.
The dominant localized mode at long wavelengths appea
be a rarefactive region of negative wave intensity~hole!,
which may however become unstable to oblique modula
or variations of thenc /nh ratio. It should be mentioned tha
both bright and dark/gray envelope excitations are poss
within this model; thus, even though the latter appear to
rather privileged within the parameter range where waves
expected not to be heavily damped, the former may exist
to oblique amplitude perturbations. In conclusion, we str
that the qualitative aspects of the observed envelope sol
n

J
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structures are recovered from our simple fluid model. T
present investigation can be readily extended to include
effects of the geomagnetic field, a tenuous electron be
and on dynamics on the amplitude modulation of the EAW
The magnetic field effects would produce three-dimensio
NLSE in which the longitudinal and transverse~to the exter-
nal magnetic field direction! group dispersions would be dif
ferent due to the cold electron polarization effect. The h
monic generation nonlinearities would also be modified
the presence of the external magnetic field.
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